Abstract
This study aimed to investigate the feasibility of using dual-layer spectral CT multi-parameter feature to predict microvascular invasion of hepatocellular carcinoma. This retrospective study enrolled 50 HCC patients who underwent multiphase contrast-enhanced spectral CT studies preoperatively. Combined clinical data, radiological features with spectral CT quantitative parameter were constructed to predict MVI. ROC was applied to identify potential predictors of MVI. The CT values obtained by simulating the conventional CT scans with 70 keV images were compared with those obtained with 40 keV images. 50 hepatocellular carcinomas were detected with 30 lesions (Group A) with microvascular invasion and 20 (Group B) without. There were significant differences in AFP,tumer size, IC, NIC,slope and effective atomic number in AP and ICrr in VP between Group A ((1000(10.875,1000),4.360±0.3105, 1.7750 (1.5350,1.8825) mg/ml, 0.1785 (0.1621,0.2124), 2.0362±0.2108,8.0960±0.1043,0.2830±0.0777) and Group B (4.750(3.325,20.425),3.190±0.2979,1.4700 (1.4500,1.5775) mg/ml, 0.1441 (0.1373,0.1490),1.8601±0.1595, 7.8105±0.7830 and 0.2228±0.0612) (all p < 0.05). Using 0.1586 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.875 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.625 with CT value at 70 keV and improved to 0.843 at 40 keV. Dual-layer spectral CT provides additional quantitative parameters than conventional CT to enhance the differentiation between hepatocellular carcinoma with and without microvascular invasion. Especially, the normalized iodine concentration (NIC) in arterial phase has the greatest potential application value in determining whether microvascular invasion exists, and can offer an important reference for clinical treatment plan and prognosis assessment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have