Abstract

Aims We use CTA and magnetic resonance data to use digital three-dimensional reconstruction and 3D printing technology to reproduce the solid replication of the uterus and surrounding tissues in vitro, fully evaluate the adjacency of tumor tissues with surrounding important organs, blood vessels, and lymph nodes, and reduce the impact. The normal organ structure and function of the surgeon can shorten the operation time, reduce the bleeding during the operation, and reduce the perioperative complications of the patient to improve the prognosis of the patient. Materials and Methods Select 40 EC patients and divide them into group A (3D reconstruction data is transmitted to 3D printing equipment according to the results of CTA and MRI examination, and a 3D model is printed out according to the ratio of 1 : 1 for evaluation and judgment before surgery) and group B (according to MRI imaging examination, there were 20 cases each). Different surgical conditions, quality of life, adverse reactions, and clinical efficacy were evaluated in each group. Results The operation time, the time of the first anus exhaust, the hospitalization time after the operation, and the blood loss of the operation in group A were significantly lower than those in group B. Statistics showed that the difference was significant (P < 0.05). The quality of life scores of emotion, cognition, society, and overall health of group A were significantly higher than those of group B, while physical score, fatigue, nausea, vomiting, and pain were lower than those of group B, which were statistically significant (P < 0.05). Both groups of patients had complications after the operation, and they were asked to be followed up at the outpatient clinic 3 months after the operation. All patients recovered well. There were 19 and 18 patients in groups A and B, respectively, complaining of improvement in clinical symptoms, and the difference was not statistically significant (P < 0.05). Conclusion With the support of digital three-dimensional reconstruction and 3D printing technology, complex operations can be accurately performed, improving the efficacy and safety of patients after EC surgery, improving patient outcomes and quality of life, improving EC positioning accuracy, and reducing tumor residue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call