Abstract
To evaluate disease symptoms, and clinical and magnetic resonance imaging (MRI) findings and to perform longitudinal volumetric MRI analyses in a European multicenter cohort of pediatric anti-N-methyl-D-aspartate receptor encephalitis (NMDARE) patients. We studied 38 children with NMDARE (median age = 12.9 years, range =1-18) and a total of 82 MRI scans for volumetric MRI analyses compared to matched healthy controls. Mixed-effect models and brain volume z scores were applied to estimate longitudinal brain volume development. Ordinal logistic regression and ordinal mixed models were used to predict disease outcome and severity. Initial MRI scans showed abnormal findings in 15 of 38 (39.5%) patients, mostly white matter T2/fluid-attenuated inversion recovery hyperintensities. Volumetric MRI analyses revealed reductions of whole brain and gray matter as well as hippocampal and basal ganglia volumes in NMDARE children. Longitudinal mixed-effect models and z score transformation showed failure of age-expected brain growth in patients. Importantly, patients with abnormal MRI findings at onset were more likely to have poor outcome (Pediatric Cerebral Performance Category score > 1, incidence rate ratio = 3.50, 95% confidence interval [CI] = 1.31-9.31, p = 0.012) compared to patients with normal MRI. Ordinal logistic regression models corrected for time from onset confirmed abnormal MRI at onset (odds ratio [OR] = 9.90, 95% CI = 2.51-17.28, p = 0.009), a presentation with sensorimotor deficits (OR = 13.71, 95% CI = 2.68-24.73, p = 0.015), and a treatment delay > 4 weeks (OR = 5.15, 95% CI = 0.47-9.82, p = 0.031) as independent predictors of poor clinical outcome. Children with NMDARE exhibit significant brain volume loss and failure of age-expected brain growth. Abnormal MRI findings, a clinical presentation with sensorimotor deficits, and a treatment delay > 4 weeks are associated with worse clinical outcome. These characteristics represent promising prognostic biomarkers in pediatric NMDARE. ANN NEUROL 2020 ANN NEUROL 2020;88:148-159.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have