Abstract
BackgroundShort-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. In addition, because of the Leigh-like presentation, we studied enzymes involved in bioenergetics.MethodsMetabolite, enzymatic, protein and genetic analyses were performed in four patients, including two siblings. Palmitate loading studies in fibroblasts were performed to study mitochondrial β-oxidation. In addition, enoyl-CoA hydratase activity was measured with crotonyl-CoA, methacrylyl-CoA, tiglyl-CoA and 3-methylcrotonyl-CoA both in fibroblasts and liver to further study the role of SCEH in different metabolic pathways. Analyses of pyruvate dehydrogenase and respiratory chain complexes were performed in multiple tissues of two patients.ResultsAll patients were either homozygous or compound heterozygous for mutations in the ECHS1 gene, had markedly reduced SCEH enzymatic activity and protein level in fibroblasts. All patients presented with lactic acidosis. The first two patients presented with vacuolating leukoencephalopathy and basal ganglia abnormalities. The third patient showed a slow neurodegenerative condition with global brain atrophy and the fourth patient showed Leigh-like lesions with a single episode of metabolic acidosis. Clinical picture and metabolite analysis were not consistent with a mitochondrial fatty acid oxidation disorder, which was supported by the normal palmitate loading test in fibroblasts. Patient fibroblasts displayed deficient hydratase activity with different substrates tested. Pyruvate dehydrogenase activity was markedly reduced in particular in muscle from the most severely affected patients, which was caused by reduced expression of E2 protein, whereas E2 mRNA was increased.ConclusionsDespite its activity towards substrates from different metabolic pathways, SCEH appears to be only crucial in valine metabolism, but not in isoleucine metabolism, and only of limited importance for mitochondrial fatty acid oxidation. In severely affected patients SCEH deficiency can cause a secondary pyruvate dehydrogenase deficiency contributing to the clinical presentation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-015-0290-1) contains supplementary material, which is available to authorized users.
Highlights
Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs
We studied the enzymatic abnormalities in SCEH deficiency in more detail
Identification of SCEH deficiency in four novel patients In patients 1–3, mutations were identified in the ECHS1 gene by exome sequencing with diagnosis confirmed by enzymatic analysis of SCEH activity in skin fibroblasts
Summary
Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. Short-chain enoyl-CoA hydratase (SCEH, EC4.2.1.17) called crotonase, encoded by ECHS1 catalyzes the hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acylCoAs [1] (Fig. 1). SCEH is believed to be one of the key enzymes of the mitochondrial β-oxidation machinery, catalyzing the second step of mitochondrial β-oxidation of short- and medium-chain fatty acyl-CoAs [2]. SCEH has broad substrate specificity for Branched-chain amino acid oxidation Valine Isoleucine Leucine
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have