Abstract

Main features of spatial distribution and time variations of meteorological parameters in the Southern hemisphere at altitudes 25–80 km are reviewed on the basis of zonal empirical models revised in 1982. Meridional distribution and seasonal variations are analysed. For comparison purposes with the Northern hemisphere, a model developed by Cole and Kantor in 1978 is used. It is revealed that the compilation of new models of the Southern hemisphere atmosphere has not resulted in substantial revision of hemispheric-structure outlined earlier in studies conducted in the Central Aerological Observatory. Meridional distribution of the parameters in summer is characterized by higher values of temperature, pressure and density gradients in the stratosphere of the Southern hemisphere than in that of the Northern hemisphere. This resulted in greater advancement of the core of the summer-time easterly (low towards the equator in the Southern hemisphere than in its northern counterpart. In winter, meridional temperature gradients in the middle stratosphere are greater in the Southern hemisphere than those in the Northern hemisphere, however, rapid attenuation of the gradients with height is observed in the Southern hemisphere, and above 35–40 km they become negative near 50–60°S, in contrast to positive values typical for the Northern hemisphere stratosphere. In the wind field, specific features of the Southern hemisphere westerly flow are high intensity and relatively low altitude of the maximum speed (as compared to the Northern hemisphere). The phases of the annual temperature wave at low latitudes are similar south and north of the equator; south of 30°S a reversal of the phase is observed. The semi-annual oscillation of temperature and wind is less pronounced in middle and high latitudes of the Southern hemisphere than in the Northern hemisphere. The origin of the primary differences between the hemispheres is related mainly to lower intensity of large-scale stratospheric processes in the Southern hemisphere as compared to those in the Northern hemisphere, which is confirmed by values of the standard deviation of the parameters in the two hemispheres. In summer, temperature and pressure fields based on satellite data are symmetric relative to the poles in both hemispheres. In winter, the distortion of the mean pressure field in the mesosphere may be as great in the Southern as in the Northern hemisphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call