Abstract
Improvements in radiometric calibration are needed to achieve the desired accuracy and stability of satellite-based microwave-radiometer observations intended for the production of climate data records. Linearity, stability and traceability of measurements to an SI-unit standard should be emphasized. We suggest radiometer design approaches to achieve these objectives in a microwave calibration-reference instrument. Multi-year stability would be verified by comparison to radio-occultation measurements. Data from such an instrument could be used for climate studies and also to transfer its calibration to weather-satellite instruments. With the suitable selection of an orbit, a climatology of the diurnal variation in the measured parameters could be compiled, which would reduce uncertainties in climate trends inferred from earlier microwave radiometers over past decades.
Highlights
Accuracy and long-term consistency in space-based measurements of the earth require comparisons of satellite instruments to one another and to high-accuracy reference instruments [1]. For these calibration intercomparisons to be useful for climate studies, they must be traceable to standards that are stable over decades, in order to exclude the possibility of measurement drifts that would obscure long-term atmospheric trends
Weather observations benefit from good spatial resolution and radiometric resolution because individual measurements are assimilated into a numerical prediction model
A microwave radiometer designed as a reference instrument in a space-based climate observing system would differ in several respects from weather-satellite instruments
Summary
Accuracy and long-term consistency in space-based measurements of the earth require comparisons of satellite instruments to one another and to high-accuracy reference instruments [1]. For these calibration intercomparisons to be useful for climate studies, they must be traceable to standards that are stable over decades, in order to exclude the possibility of measurement drifts that would obscure long-term atmospheric trends. A microwave radiometer designed as a reference instrument in a space-based climate observing system would differ in several respects from weather-satellite instruments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have