Abstract
AbstractSeed‐source movement trials using common garden experiments are needed to understand climate, tree (host), and pathogen interactions. Douglas‐fir (Pseudotsuga menziesii var menziesii) is an important tree species native to western North America influenced by the foliar fungi Phaeocryptopus gaeumannii, a biotroph and causal agent of Swiss needle cast (SNC), and Rhabdocline species, necrotrophs that cause Rhabdocline needle cast. We used the Douglas‐fir Seed‐Source Movement Trial, a large provenance study of Douglas‐fir that consists of populations and test sites chosen to represent the range of climate conditions experienced by Douglas‐fir west of the Cascade and northern Sierra Nevada Mountains, USA, to assess disease severity and symptom expression in Douglas‐fir in relation to climatic differences between test sites and population sources. Using generalized linear mixed models, probability of disease severity/expression was modeled with respect to the climate variables May through September precipitation (MSP), mean winter temperature (MWT), and continentality. Stark differences in disease expression were observed in trees from different regions, especially in relation to resistance to Rhabdocline spp. and tolerance to P. gaeumannii. There were no major differences across seed‐source regions at any particular site in infection levels of P. gaeumannii assessed by fruiting body abundance, yet disease tolerance followed similar geographic patterns as resistance to Rhabdocline spp. Transfers of populations from low to high MSP, and/or cool to warm MWT, increased the probability of moderate to severe Rhabdocline spp. infection and SNC disease symptoms. Our results suggest that local seed sources are adapted to local climate and pathogen pressures and that seed sources from regions with high foliage disease pressure are most resistant/tolerant to those foliage diseases. We also confirm that temperature and precipitation are important epidemiological factors in forest disease and that assisted migration must take into account trophic interactions of trees. Movement of seed sources from dry spring and summer and/or cool winter conditions to mild, mesic environments is likely to lead to increased probability of losses due to these foliage diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have