Abstract

The allocation of plant biomass above and below ground reflects their strategic resource utilization, crucial for understanding terrestrial carbon flux dynamics. In our comprehensive study, we analyzed biomass distribution patterns in 580 broadleaved and 345 coniferous forests across China from 2005 to 2020, aiming to discern spatial patterns and key drivers of belowground biomass proportion (BGBP) in these ecosystems. Our research revealed a consistent trend: BGBP decreases from northwest to southeast in both forest types. Importantly, coniferous forests exhibited significantly higher BGBP compared to broadleaved forests (p < 0.001). While precipitation and soil nutrients primarily influenced biomass allocation in broadleaved forests, temperature and soil composition played a pivotal role in coniferous forests. Surprisingly, leaf traits had a negligible impact on BGBP (p > 0.05). Climatic factors, such as temperature and rainfall, influenced biomass partitioning in both strata by altering soil nutrients, particularly soil pH. These findings provide valuable insights into understanding carbon sequestration dynamics in forest ecosystems and improving predictions of the future trajectory of this critical carbon cycle component.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call