Abstract

Afforestation can improve soil nutrient content and microbial community structure, increase soil carbon sequestration, and reduce greenhouse gas emissions. However, at present, there is a lack of research on the low hills and mountainous areas in North China. In order to scientifically evaluate the effect of afforestation recovery with different forest types on the improvement of the soil ecological system, the Fanggan ecological restoration in North China was taken as the research sample, and the coniferous forests, mixed coniferous and broad-leaved forest quadrats and broad-leaved forests, as well as the contrast of barren hills bushes were set to achieve the research goals. Research results of different forest types on soil nutrient and bacterial community in the Fanggan ecological restoration area have shown that afforestation with broad-leaved forests most obviously improved the nutrition properties and bacterial community of soil. (1) Broad-leaved forest afforestation obviously improved water retention and ammonia nitrogen content but reduced the content of available phosphorus and nitrate nitrogen of surface soil. It also increased available phosphorus, ammonia nitrogen, and nitrate nitrogen content of lower soil. (2) Broad-leaved forest afforestation significantly increased α-diversity of the bacterial community in surface soil, but only enhanced the Chao1 and ACE indices of lower soil. In addition, afforestation has also significantly changed the structure of soil bacterial community and β-diversity index. (3) Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia accounted for the highest proportion of soil bacterial community. Proteobacteria and Verrucomicrobia occupied higher proportion in broad-leaved forests than in other forest types, while the proportion of Acidobacteria and Actinobacteria was the opposite. (4) Afforestation decreased cooperation and increased competition among bacteria of surface soil as well as increased coexistence and rejection among subsoil bacteria. (5) pH, ammonia nitrogen, organic carbon, and available phosphorus have exhibited a significant impact on the structure of bacterial community in the surface soil, while the bacterial community structure of the lower soil was mainly affected by pH and available phosphorus. Results have fully demonstrated the positive effects of broad-leaved forest on the restoration of soil nutrients and microbial community structure. Meanwhile, the important combinations of soil physical and chemical factors affecting soil bacterial community structure were also explored. The results can provide scientific basis for revealing the mechanism of soil organic matter, nutrient and ecological function restoration by artificial afforestation, and also offer theoretical support and practical reference for the restoration of artificial afforestation in the hilly and mountainous areas of North China.

Highlights

  • There exists a series of ecological functions of forest ecosystems such as water and soil conservation, greenhouse effect mitigation, plant growth promoting and so on

  • (4) Afforestation decreased cooperation and increased competition among bacteria of surface soil as well as increased coexistence and rejection among subsoil bacteria. (5) pH, ammonia nitrogen, organic carbon, and available phosphorus have exhibited a significant impact on the structure of bacterial community in the surface soil, while the bacterial community structure of the lower soil was mainly affected by pH and available phosphorus

  • Afforestation can promote the assimilation of atmospheric carbon dioxide into organic carbon and sequestration in soil organic carbon pool, which can greatly reduce the emission of greenhouse gas [7], so it plays a very positive role in restoring soil organic matter reserves and alleviating the greenhouse effect

Read more

Summary

Introduction

There exists a series of ecological functions of forest ecosystems such as water and soil conservation, greenhouse effect mitigation, plant growth promoting and so on It plays a crucial role in coordinating resources, environment, and social development [1,2]. Afforestation can promote the assimilation of atmospheric carbon dioxide into organic carbon and sequestration in soil organic carbon pool, which can greatly reduce the emission of greenhouse gas [7], so it plays a very positive role in restoring soil organic matter reserves and alleviating the greenhouse effect. It will directly affect all soil ecological functions

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call