Abstract

Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968–2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

Highlights

  • The aforementioned contrasting natures and magnitudes of the impacts of the climate trends are anticipated, owing to the large scale agro-climatic variations that occur in different regions

  • In the light of its contribution in the national food production and the climate variability that the region is subjected to, there are several scientific and difficult questions that need to be addressed to provide insight and scientific information and data to policy and decision makers and resource planners and managers at the national, state, and local levels for enhancing the scientific understandings of climate vs. agricultural production dynamics, which can lead to enhancements of agricultural production practices in response to changing climatic conditions: 1. How much is the overall variability in crop yields in the region and what are the geographical patterns associated with the climate variability?

  • We used the coefficient of variation (CV), which is yield variability normalized by mean yields as a measure

Read more

Summary

Introduction

The aforementioned contrasting natures and magnitudes of the impacts of the climate trends are anticipated, owing to the large scale agro-climatic variations (climatological growing period length, growing degree days, rainfall patterns, and prevalence of different crop varieties) that occur in different regions. The U.S Great Plains region we consider it in this study encompasses nine states and contributes to 46%, 89% and 36% of the national maize (Zea mays L.), sorghum (Sorghum bicolor), and soybean (Glycine max) production and growing a significant number of other crop varieties This region is home to the Ogallala aquifer, which is the major source of irrigation in conjunction with surface water and is one of the largest underground aquifers in the world. What climate factor (air temperature or precipitation or both) is dominant in explaining crop yield variability spatially and what is the proportion of regional food production that it affects?

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.