Abstract
Global climate change has significantly impacted the production of various crops, particularly long-term fruit-bearing plants such as citrus. This study analyzed the fruit quality of 12 citrus orchards (Citrus Sinensis L.Osbeck cv. Bingtang) in a subtropical region in Yunnan, China from 2014 to 2022. The results indicated that high rainfall (>220 mm) and low cumulative temperature (<3150 °C) promoted increases in titratable acidity (>1.8 %) in young fruits. As the fruits further expanded (with a horizontal diameter increasing from 50 to 65 mm), excessive rainfall (300-400 mm), lower cumulative temperature (<2400 °C), and a reduced diurnal temperature range (<10 °C) hindered decreases in titratable acidity. Conversely, low rainfall (<220 mm), high cumulative temperature (>3150 °C), and a high diurnal temperature range (>14 °C) promoted the accumulation of soluble solids in young fruits (9 %) at 120 days after flowering (DAF). Furthermore, low rainfall (<100 mm) favored the accumulation of soluble solids (1.5 %) during fruit expansion (195-225DAF). To quantify the relationship between fruit acidity and climate variables at 120 DAF, we developed a regression model, which was further validated by actual measurements and accurately predicted fruit acidity in 2023. Our findings have the potential to assist citrus growers in optimizing cultivation techniques for the production of high-quality citrus under increasingly variable climatic conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have