Abstract

Filarioid parasites represent major health hazards with important medical, veterinary, and economic implications, and considerable potential to affect the everyday lives of tens of millions of people globally (World Health Organization, 2007). Scenarios for climate change vary latitudinally and regionally and involve direct and indirect linkages for increasing temperature and the dissemination, amplification, and invasiveness of vector-borne parasites. High latitude regions are especially influenced by global climate change and thus may be prone to altered associations and dynamics for complex host-pathogen assemblages and emergence of disease with cascading effects on ecosystem structure. Although the potential for substantial ecological perturbation has been identified, few empirical observations have emanated from systems across the Holarctic. Coincidental with decades of warming, and anomalies of high temperature and humidity in the sub-Arctic region of Fennoscandia, the mosquito-borne filarioid nematode Setaria tundra is now associated with emerging epidemic disease resulting in substantial morbidity and mortality for reindeer and moose. We describe a host-parasite system that involves reindeer, arthropods, and nematodes, which may contribute as a factor to ongoing declines documented for this ungulate species across northern ecosystems. We demonstrate that mean summer temperatures exceeding 14°C drive the emergence of disease due to S. tundra. An association between climate and emergence of filarioid parasites is a challenge to ecosystem services with direct effects on public health, sustainability of free-ranging and domestic ungulates, and ultimately food security for subsistence cultures at high latitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.