Abstract
Coastal habitats can play an important role in climate change mitigation. As Louisiana implements its climate action plan and the restoration and risk reduction projects outlined in its 2017 Louisiana Coastal Master Plan, it is critical to consider potential greenhouse gas (GHG) fluxes in coastal habitats. This study estimated the potential climate mitigation role of existing, converted, and restored coastal habitats for years 2005, 2020, 2025, 2030, and 2050, which align with the Governor of Louisiana's GHG reduction targets. An analytical framework was developed that considered 1) available scientific data on net ecosystem carbon balance fluxes per habitat and 2) habitat areas projected from modeling efforts used for the 2017 Louisiana Coastal Master Plan to estimate the net GHG flux of coastal area. The coastal area was estimated as net GHG sinks of -38.4 ± 10.6 and - 43.2 ± 12.0 Tg CO2 equivalents (CO2 e) in 2005 and 2020, respectively. The coastal area was projected to remain a net GHG sink in 2025 and 2030, both with and without implementation of Coastal Master Plan projects (means ranged from -25.3 to -34.2 Tg CO2 e). By 2050, with model-projected wetland loss and conversion of coastal habitats to open water due to coastal erosion and relative sea level rise, Louisiana's coastal area was projected to become a net source of greenhouse gas emissions both with and without the Coastal Master Plan projects. However, at year 2050, Louisiana Coastal Master Plan project implementation was projected to avoid the release of +8.8 ± 1.3 Tg CO2 e compared to an alternative with no action. Reduction in current and future stressors to coastal habitats, including impacts from sea level rise, as well as the implementation of restoration projects could help to ensure coastal areas remain a natural climate solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.