Abstract

Climate change, one of the major environmental challenges facing mankind, has caused intermittent droughts in many regions resulting in reduced water resources. This study investigated the impact of climate change on the characteristics (occurrence, duration, and severity) of meteorological drought across Ankara, Turkey. To this end, the observed monthly rainfall series from five meteorology stations scattered across Ankara Province as well as dynamically downscaled outputs of three global climate models that run under RCP 4.5 and RCP 8.5 scenarios was used to attain the well-known SPI series during the reference period of 1986–2018 and the future period of 2018–2050, respectively. Analyzing drought features in two time periods generally indicated the higher probability of occurrence of drought in the future period. The results showed that the duration of mild droughts may increase, and extreme droughts will occur with longer durations and larger severities. Moreover, joint return period analysis through different copula functions revealed that the return period of mild droughts will remain the same in the near future, while it declines by 12% over extreme droughts in the near future.

Highlights

  • Drought is a climatic disaster that heavily affects all the aspects of the ecosystem and human life

  • The comparison of the number of drought events between the reference and the near future periods indicates that on average, the number of droughts will be less in the future compared with the reference period (13 out of 30 comparisons show lower drought numbers for future periods than reference period, 10 out of 30 comparisons show higher numbers, and seven out of 30 comparisons show equal drought numbers)

  • The comparison of the probability density function (PDF) curves of reference and future projection drought characteristics shows that the future PDF curves are skewed positively, clearly showing both future drought durations and average severity decrease relative to the reference period

Read more

Summary

Introduction

Drought is a climatic disaster that heavily affects all the aspects of the ecosystem and human life. Meteorological droughts have many factors that play a significant role in its occurrences such as characteristics of rainfall One of the main tools for drought monitoring is the use of drought indices. Drought indices are used to quantify the drought phenomenon and make it easier for different users to analyze climate irregularities in terms of severity, duration, frequency, and spatial expansion. Among the several indices developed for meteorological drought analysis, the standardized precipitation index (SPI; McKee et al 1993) is one of the most commonly used indices in the literature. The simplicity of its calculation and application to different timescales has enabled this index to analyze meteorological drought for any location (Svoboda and Fuchs 2016)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call