Abstract

The impacts of climate change on precipitation and drought characteristics over Bangladesh were examined by using the daily precipitation outputs from 29 bias-corrected general circulation models (GCMs) under the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. A precipitation-based drought estimator, namely, the Effective Drought Index (EDI), was applied to quantify the characteristics of drought events in terms of the severity and duration. The changes in drought characteristics were assessed for the beginning (2010–2039), middle (2040–2069), and end of this century (2070–2099) relative to the 1976–2005 baseline. The GCMs were limited in regard to forecasting the occurrence of future extreme droughts. Overall, the findings showed that the annual precipitation will increase in the 21st century over Bangladesh; the increasing rate was comparatively higher under the RCP8.5 scenario. The highest increase in rainfall is expected to happen over the drought-prone northern region. The general trends of drought frequency, duration, and intensity are likely to decrease in the 21st century over Bangladesh under both RCP scenarios, except for the maximum drought intensity during the beginning of the century, which is projected to increase over the country. The extreme and medium-term drought events did not show any significant changes in the future under both scenarios except for the medium-term droughts, which decreased by 55% compared to the base period during the 2070s under RCP8.5. However, extreme drought days will likely increase in most of the cropping seasons for the different future periods under both scenarios. The spatial distribution of changes in drought characteristics indicates that the drought-vulnerable areas are expected to shift from the northwestern region to the central and the southern region in the future under both scenarios due to the effects of climate change.

Highlights

  • Nowadays, climate change is regarded as a major global issue, and it poses significant challenges to human existence and socio-economic development, in Bangladesh

  • Chen et al [30] investigated the future change in the drought pattern over the 21st century in China by using global climate models and regional climate models (RCMs) under the SRES (Special Report on Emissions Scenarios) A1B scenario, and the findings indicated that droughts will become less frequent in most areas of China

  • Rahman et al [34] estimated the annual rainfall by using version 3 of an RCM (RegCM3), and the findings indicated that a 50% decrease in rainfall will occur by 2060

Read more

Summary

Introduction

Climate change is regarded as a major global issue, and it poses significant challenges to human existence and socio-economic development, in Bangladesh. The dominant features of climate change in Bangladesh detected in the late 19th century include the significant increases in temperature and monsoon and post-monsoon precipitation due to global warming. Great effort needs to be expended on researching future changes in rainfall patterns, which are the major causes of drought in Bangladesh and can lead to adverse changes in economic and social development. The effects of gradual climate changes and extreme weather events may negatively impact overall socio-economic development in many regions, and the scientific community and policymakers need more information about the probability of future occurrences of such events [7,8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.