Abstract

Cable-stayed bridges have been used widely in the last sixty years in bridge construction practice and are key components of transportation networks. Therefore, the potential damages and losses, either in terms of economic cost or fatalities due to natural or man-made threats could become considerably large. Several researchers have identified the significance of risk assessment, especially to natural hazards and have proposed risk assessment frameworks for bridges. Recently, it has been identified that climate change affects the occurrence of extreme events and should be also incorporated in risk assessment. In the present research work, a risk assessment framework for cable-stayed bridges is proposed. The goal is to prioritize single and total risk to provide a useful tool in the decision-making process on the design and maintenance actions for cable-stayed bridges. Herein, the case study is an indicative design alternative of a cable-stayed bridge in a coastal area in the New York Region. which is expected to face sea-level rise due to climate change. Multi-hazard risk evaluation on the investigated bridge shows that it has low risk to the seismic hazard, while it has increased risk to hurricanes, which changes from low to high depending on the investigated sea-level rise projections and hurricane intensity levels. Hence, hurricane governs the resulting total risk of the case study bridge.

Highlights

  • Cable-stayed bridges have been used widely in the last 60 years in bridge construction practice. Ren and Obata (1999) state that reasons for their use are appealing aesthetics, full and efficient utilization of structural materials, increased stiffness over suspension bridges, efficient and fast mode of construction and relatively small size of bridge elements

  • The limit state of deck displacement is equal to 1.1 m (0.1% of bridge length); Based on ACI requirements (American Concrete Institute (ACI), 2014) the analysis shows that a limit state of 15356 kN for shear capacity and 109142 kNm for moment capacity are suitable for this study and are within the ultimate thresholds of the towers

  • It is noted that the global probability of failure of the bridge system is large for high seismic intensity levels even for the lower bound of Equation (3)

Read more

Summary

Introduction

Cable-stayed bridges have been used widely in the last 60 years in bridge construction practice. Ren and Obata (1999) state that reasons for their use are appealing aesthetics, full and efficient utilization of structural materials, increased stiffness over suspension bridges, efficient and fast mode of construction and relatively small size of bridge elements. The present research work proposes such a risk assessment methodology for cable-stayed bridges accounting for natural hazards and climate change impact.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call