Abstract
The realization of nonlinear optical effects at the single photon level would be a significant step forward for quantum information processing and communications. In particular, a strong dispersive and non-dissipative nonlinearity could enable the implementation of a two-photon phase gate. One possible strategy to reach such huge nonlinearities is to convert photons into strongly interacting particles, like collective excitations involving Rydberg atoms. Interactions between Rydbergs in fact lead to a “blockade” phenomenon, where each Rydberg atom blocks the excitation of its neighbors, which can result in strong nonlinearities. Here, we use an ensemble of cold Rydberg atoms inside an optical cavity to create large dispersive nonlinearities on a weak probe beam far detuned from a D2-line transition in <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">87</sup> Rb atoms [1]. The used three-level ladder scheme, with a second control field detuned from resonance on the upper transition towards a Rydberg level, is shown in Fig.1a). A simple explanation of the nonlinear effect is the following: if a very weak probe beam is injected into the cavity in the presence of the blue light on the two-photon transition, it experiences the single-atom three-level dispersion described by the real part of the three-level susceptibility χ- <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3level</sub> . This corresponds to a certain shift of the transmitted cavity peak (Fig. 1b)).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.