Abstract

As a significant cause of disastrous accidents, stress corrosion cracking (SCC) under elastic loads was investigated in type 316 L single-crystal stainless steel immersed in a boiling 45 wt% MgCl2 solution. Three-dimensional microcrack morphologies, characterized using synchrotron-based X-ray computed tomography, indicate that the SCC advanced along the cleavage planes (1 0 0) with the lowest free surface energy. The first-principles simulations show that synergistic adsorption of H and Cl atoms in the octahedral interstices minimized the surface energy of the cleavage planes (0 0 1) owing to a 73% reduction. Afterwards, the cleavage-dissolution mechanism is put forward, proposing that the SCC essentially originates from preferential brittle rupture of the corrosive environment particle adsorbed low-surface-energy cleavage planes in the elastic stress concentration zones, and anodic dissolution along the crack fronts. Besides, the corrosive environment particles primarily consist of the hydrogen atoms and the electronegative ions such as the chlorine ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.