Abstract

Secretory immunoglobulin A (SIgA), the principle immune defense at respiratory and other mucosal sites in the body, is highly dependant on its molecular structure for effective antibody function. Previous studies have demonstrated that gram-negative but not gram-positive isolates from patients with nosocomial pneumonia have IgA protease activity that contributes to the development of infection. We postulate that SIgA cleavage by bacteria would also affect anti-inflammatory properties of IgA and studied this in vitro. Sterile filtrates obtained from Pseudomonas, Acinetobacter, and methicillin resistant Staphylococcus aureus (MRSA) held in culture with SIgA were used to challenge polymorphonuclear neutrophils (PMNs) obtained from healthy volunteers. In a second group of experiments, blood monocytes were incubated with lipopolysaccharide (LPS) or LPS + IgA, and the resulting culture supernatants was used to stimulate PMNs in vitro. LPS-stimulated monocytes increased CD11b expression, O2-generation and elastase release by PMNs. Secretory IgA but not IgG abrogated this response. Cleavage of SIgA by the gram-negative respiratory isolates, Pseudomonas aeruginosa and Acinetobacter baumanii also led to the loss of cellular effector function noted with intact SIgA. Additionally, PMN cytotoxic potential was similar to that noted with PMNs treated with supernatant from LPS-stimulated monocytes. IgA cleavage by gram-negative respiratory isolates may lead to the development of pneumonia and the subsequent severity of the infection as a result of uncontrolled inflammatory responses by the host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call