Abstract

Abstract The direct perturbation of anthropogenic aerosols on Earth’s energy balance [i.e., direct aerosol radiative forcing (DARF)] remains uncertain in climate models. In this study, we investigate the uncertainty of DARF associated with aerosol vertical distribution, using simulation results from 14 global models within phase 6 of the Coupled Model Intercomparison Project (CMIP6). The column mass loading for each aerosol species is first normalized to the multimodel average for each model, which is called the mass-normalization process. The unified radiative transfer model and aerosol optical parameter are used, so that the differences in the calculated DARF are solely attributed to the difference in aerosol vertical profiles. The global mean DARF values in 2014 with respect to 1850 before and after mass normalization are −0.77 ± 0.52 and −0.81 ± 0.12 W m−2 respectively, assuming external mixing, which indicates that the intermodel difference in aerosol vertical distribution accounts for ∼20% of the total DARF uncertainty. We further conduct two separate experiments by normalizing aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) profiles, respectively, and find that the vertical distribution of SSA results in larger DARF uncertainty (0.17 W m−2) than that of AOD (0.10 W m−2). Finally, compared with CALIPSO observation, CMIP6 models tend to produce higher aerosol layers. The bias in modeled aerosol profile with respect to CALIPSO leads to stronger DARF, especially for land regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.