Abstract
Cross-Linked Ethoxylate Acrylate Resin (CLEAR) supports were prepared by radical copolymerization, either in the bulk or suspension mode, of the branched cross-linker trimethylolpropane ethoxylate (14/3 EO/OH) triacrylate (1) with one or more of allylamine (2), 2-aminoethyl methacrylate·HCl (3), poly(ethylene glycol-400) dimethacrylate (4), poly(ethylene glycol) ethyl ether methacrylate (5), and trimethylolpropane trimethacrylate (6). The resultant highly cross-linked copolymers by the bulk procedures were ground and sieved to particles, whereas the suspension polymerization procedure gave highly cross-linked spherical beaded supports. CLEAR polymeric supports showed excellent swelling properties in an unusually broad range of solvents, including water, alcohols, tetrahydrofuran, dichloromethane, and N,N-dimethylformamide. To demonstrate their usefulness for peptide synthesis, CLEAR supports were derivatized with an “internal reference” amino acid [norleucine] and a handle [5-(4-Fmoc-aminomethyl-3,5-dimethoxyphenoxy)valeric acid] and were tested for both batchwise and continuous-flow solid-phase syntheses of challenging peptides such as acyl carrier protein (65-74), retro-acyl carrier protein (74-65), and the 17-peptide human gastrin-I. Comparisons to commercially available supports, e.g., polystyrene, Pepsyn K, Polyhipe, PEG-PS, TentaGel, and PEGA were also carried out. CLEAR supports are entirely stable under standard conditions of peptide synthesis but are in some cases labile to certain strong bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.