Abstract

Noble metals such as Pt are a perfect substrate for the catalytic growth of monolayer graphene. However, the requirements of the subsequent transfer process are not compatible with the traditional etching method. In this work, we find that the interaction of graphene with Pt foil can be weakened through the intercalation of carbon monoxide (CO) under ambient pressure. This intercalation process occurs on both hexagonal-shape graphene islands and irregular graphene patches on changing the CO partial pressure from 0 to 0.6 MPa, as observed by scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoemission spectroscopy. We demonstrate that, on a practical timescale, the intercalation ratio is proportional to the partial pressure of CO. Furthermore, we develop a clean transfer method of CO-intercalated graphene with water as a peeling agent. We show that this method enables the transfer of tens of micrometer-scale graphene patches onto SiO2/Si, which are free from metal or oxide particle contamination. This transfer method should be a significant step towards the clean transfer of graphene, as well as the recyclable use of noble metal substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.