Abstract

Here, we developed a pressurized bioreactor system that increase carbon monoxide (CO) transfer efficiency in order to enhance the hydrogen productivity in the microbial water gas shift reaction by Thermococcus onnurineus NA1. The effects of CO pressure on the hydrogen production rate, CO consumption rate and the cell growth were investigated using small scale stainless steel bottles at various CO partial pressures. It was found that CO solubility increased by applying pressure can affect hydrogen production positively as long as the increased toxicity of CO is endurable to cells. The hydrogen productivity increased to some extent with CO pressure, but decreased drastically at the pressure higher than 4 bar. On the other hand, the effect of pressure itself on the cell's activity was not as significant as that of CO solubility increase. In the experiments at various system pressures with identical CO partial pressure of 1 bar, more than 80% of the cell activity remains even at total pressure of 10 bar. Also, it was important to determine the appropriate time to increase pressure for preventing excess CO in the reactor. Based on these results, a fermentation strategy for the pressurized system was designed and applied to a 5 L bioreactor with the continuous supply of the gas containing 60% CO. When the pressure was introduced to the bioreactor up to 4 bar at CO limitation condition, the unprecedented high productivity (360 mmol L−1 h−1) could be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.