Abstract
A new class of hybrid materials based on carbon nanotubes (CNT) rooted on smectite clays (SWy) was synthesized by catalytic chemical vapor deposition (CCVD) method, and studied to be introduced in a perfluorosulfonic acid (Nafion) membrane. Side-wall chemical oxidation and organo-functionalization of the CNT was performed using organic ester molecules containing hydrophilic groups (−RSO3H). SWy–CNT nanoadditives were incorporated in the polymer by solution-precipitation method producing highly homogeneous nanocomposite membranes with outstanding mechanical properties. Materials were characterized by a combination of techniques (TGA, Raman, FT-IR, SEM, TEM, and DMA), while a deep investigation on the water transport properties was performed by NMR methods (PFG and relaxation times). Membranes containing SWy–oxCNT–RSO3H nanoadditives are able to guarantee a very high proton diffusion in “quasi-anhydrous” conditions. Proton mobility is ensured by a correct network created from the long nanotubes (well distri...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have