Abstract

Claudins are a family of tight junction proteins, and serve important roles in epithelial barrier, selective ion transports and cancer metastasis. Although the exact role of claudin-7 in human lung cancer has not been completely elucidated, recent clinical studies have demonstrated that claudin-7 is associated with the survival of patients with lung cancer. Our previous studies have demonstrated that claudin-7 forms a protein complex with integrin β1 in human lung cancer cells. The knockdown (KD) of claudin-7 by short hairpin RNA (shRNA) reduced integrin β1 expression and increased the cell proliferative rate, whereas claudin-7 re-expression in the KD cells decreased the cell proliferation. It is unknown as to whether claudin-7 and integrin β1 regulate cell proliferation and invasion synergistically or independently. In the present study, it was observed that ectopic expression of integrin β1 in claudin-7 KD lung cancer cells did not reduce the cell proliferation. However, integrin β1-transfected cells migrated more effectively in wound healing and cell invasion assays and were more adhesive in a cell attachment assay when compared with those of claudin-7 KD cells. This indicates that claudin-7 controls cell proliferation, while cell attachment and motility were regulated partially through integrin β1. Additionally, claudin-7 overexpression in claudin-7 KD cells resulted in an improved ability to attach to the surface of cell culture plates and a higher expression of focal adhesion proteins when compared with claudin-7 non-KD control cells, which supports the role of claudin-7 in cell adhesion and motility. Taken together, these data suggest that claudin-7 regulates cell motility through integrin β1, providing additional insight into the roles of claudins in carcinogenesis and cancer cell metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.