Abstract

OBJECTIVES:Leukoaraiosis is described as white matter lesions that are associated with cognitive dysfunction, neurodegenerative disorders, etc. Myelin depletion is a salient pathological feature of, and the loss of oligodendrocytes is one of the most robust alterations evident in, white matter degeneration. Recent studies have revealed that claudin proteins are aberrantly expressed in leukoaraiosis and regulate oligodendrocyte activity. However, the roles of claudin-1 and claudin-3 in oligodendrocytes and leukoaraiosis are still not well-defined.METHODS:Quantitative polymerase chain reaction was used to measure the expression of claudin-1 (CLDN1), claudin-3 (CLDN3), and myelinogenesis-related genes such as myelin basic protein (MBP), proteolipid protein (PLP), oligodendrocyte transcription factor 2 (OLIG2), and SRY-box transcription factor 10 (SOX10) in leukoaraiosis patients (n=122) and healthy controls (n=122). The expression of claudin-1 and claudin-3 was either ectopically silenced or augmented in Oli-neu oligodendrocytes, and colony formation, apoptosis, and migration assays were performed. Finally, the expression of myelin proteins was evaluated by western blotting.RESULTS:Our results revealed that in addition to SOX10, the expression levels of claudin-1, claudin-3, and myelinogenesis-related proteins were prominently downregulated in leukoaraiosis patients, compared to those in healthy controls. Furthermore, the growth and migration of Oli-neu cells were downregulated upon silencing claudin-1 or claudin-3. However, the overexpression of claudin-1 or claudin-3 resulted in the reduction of the degree of apoptosis in Oli-neu cells. In addition, claudin-1 and claudin-3 promoted the expression of MBP, OLIG2, PLP, and SOX10 at the translational level.CONCLUSION:Our data has demonstrated that the abnormal expression of claudin-1 and claudin-3 regulates the pathological progression of leukoaraiosis by governing the viability and myelination of oligodendrocytes. These findings provide novel insights into the regulatory mechanisms underlying the roles of claudin-1 and claudin-3 in leukoaraiosis.

Highlights

  • Leukoaraiosis (LA), defined as white matter lesions, is a neuroimaging manifestation of cerebrovascular disease; it mainly manifests as a diffuse white matter abnormality near the lateral ventricle

  • Our data shows that the expression of CLDN-1 and CLDN-3 is vital for oligodendrocyte proliferation, apoptosis, and migration, and the proper maintenance of myelin proteins. These results demonstrate that CLDN-1 and CLDN-3 regulate the expression of myelin basic protein (MBP), proteolipid protein (PLP), oligodendrocyte transcription factor 2 (OLIG2), and SRY-box transcription factor 10 (SOX10) in oligodendrocytes and affect the progression of LA

  • There was no significant difference in age, sex, and the levels of CRP (C-reactive protein), high-density lipoprotein cholesterol (HDL-C), GLU (Fasting blood glucose), and HbA1c (Glycosylated hemoglobin) between the two groups (p40.05)

Read more

Summary

Introduction

Leukoaraiosis (LA), defined as white matter lesions, is a neuroimaging manifestation of cerebrovascular disease; it mainly manifests as a diffuse white matter abnormality near the lateral ventricle. LA has become a conventional prognosis in describing cognitive dysfunction, stroke injury, cerebral small vessel disease, and neurodegenerative disorders [1,2]. Increasing evidences show that more than 40% of apparently healthy adults over 50 years old present with the characteristics of high-intensity LA [3]. Received for publication on June 29, 2020. Accepted for publication on November 5, 2020

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call