Abstract
Segmentation tasks are important for computer-assisted surgery systems as they provide the shapes of organs and the locations of instruments. What prevents the most powerful segmentation approaches from becoming practical applications is the requirement for annotated data. Active learning provides strategies to dynamically select the most informative samples to reduce the annotation workload. However, most previous active learning literature has failed to select the frames that containing low-appearing frequency classes, even though the existence of these classes is common in laparoscopic videos, resulting in poor performance in segmentation tasks. Furthermore, few previous works have explored the unselected data to improve active learning. Therefore, in this work, we focus on these classes to improve the segmentation performance. We propose a class-wise confidence bank that stores and updates the confidence scores for each class and a new acquisition function based on a confidence bank. We apply confidence scores to explore an unlabeled dataset by combining it with a class-wise data mixture method to exploit unlabeled datasets without any annotation. We validated our proposal on two open-source datasets, CholecSeg8k and RobSeg2017, and observed that its performance surpassed previous active learning studies with about [Formula: see text] improvement on CholecSeg8k, especially for classes with a low-appearing frequency. For robSeg2017, we conducted experiments with a small and large annotation budgets to validate situation that shows the effectiveness of our proposal. We presented a class-wise confidence score to improve the acquisition function for active learning and explored unlabeled data with our proposed class-wise confidence score, which results in a large improvement over the compared methods. The experiments also showed that our proposal improved the segmentation performance for classes with a low-appearing frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of computer assisted radiology and surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.