Abstract

Active Learning has emerged as a viable solution for addressing the challenge of labeling extensive amounts of data in data-intensive applications such as computer vision and neural machine translation. The main objective of Active Learning is to automatically identify a subset of unlabeled data samples for annotation. This identification process is based on an acquisition function that assesses the value of each sample for model training. In the context of computer vision, image classification is a crucial task that typically requires a substantial training dataset. This research paper introduces innovative selection methods within the Active Learning framework, aiming to identify informative images from unlabeled datasets while minimizing the number of required training data. The proposed methods, namely Similari-ty-based Selection, Prediction Probability-based Selection, and Competence-based Active Learning, have been extensively evaluated through experiments conducted on popular datasets like Cifar10 and Cifar100. The experimental results demonstrate that the proposed methods outperform random selection and conventional selection techniques. The superior performance of the novel selection methods underscores their effectiveness in enhancing the Active Learning process for image classification tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call