Abstract
Detecting depression on its early stages helps preventing the onset of severe depressive episodes. In this study, we propose an automatic classification pipeline to detect subclinical depression (i.e., dysphoria) through the electroencephalography (EEG) signal. To this aim, we recorded the EEG signals in resting condition from 26 female participants with dysphoria and 38 female controls. The EEG signals were processed to extract several spectral and functional connectivity features to feed a nonlinear Support Vector Machine (SVM) classifier embedded with a Recursive Feature Elimination (RFE) algorithm. Our recognition pipeline obtained a maximum classification accuracy of 83.91% in recognizing dysphoria patients with a combination of connectivity and spectral measures. Moreover, an accuracy of 76.11% was achieved with only the 4 most informative functional connections, suggesting a central role of cortical connectivity in the theta band for early depression recognition. The present study can facilitate the diagnosis of subclinical conditions of depression and may provide reliable indicators of depression for the clinical community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.