Abstract
ABSTRACTAutomated generalization software must accommodate multi-scale representations of hydrographic networks across a variety of geographic landscapes, because scale-related hydrography differences are known to vary in different physical conditions. While generalization algorithms have been tailored to specific regions and landscape conditions by several researchers in recent years, the selection and characterization of regional conditions have not been formally defined nor statistically validated. This paper undertakes a systematic classification of landscape types in the conterminous United States to spatially subset the country into workable units, in preparation for systematic tailoring of generalization workflows that preserve hydrographic characteristics. The classification is based upon elevation, standard deviation of elevation, slope, runoff, drainage and bedrock density, soil and bedrock permeability, area of inland surface water, infiltration-excess of overland flow, and a base flow index. A seven class solution shows low misclassification rates except in areas of high landscape diversity such as the Appalachians, Rocky Mountains, and Western coastal regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.