Abstract
A pressing need in neurobiology is the comprehensive identification and characterization of neuronal subclasses within the mammalian nervous system. To this end, we used constellation pharmacology as a method to interrogate the neuronal and glial subclasses of the mouse cerebellum individually and simultaneously. We then evaluated the data obtained from constellation-pharmacology experiments by cluster analysis to classify cells into neuronal and glial subclasses, based on their functional expression of glutamate, acetylcholine, and GABA receptors, among other ion channels. Conantokin peptides were used to identify N-methyl-d-aspartate (NMDA) receptor subtypes, which revealed that neurons of the young mouse cerebellum expressed NR2A and NR2B NMDA receptor subunits. Additional pharmacological tools disclosed differential expression of α-amino-3-hydroxy-5-methyl-4-isoxazloepropionic, nicotinic acetylcholine, and muscarinic acetylcholine receptors in different neuronal and glial subclasses. Certain cell subclasses correlated with known attributes of granule cells, and we combined constellation pharmacology with genetically labeled neurons to identify and characterize Purkinje cells. This study illustrates the utility of applying constellation pharmacology to classify neuronal and glial subclasses in specific anatomical regions of the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.