Abstract
A major challenge in credit card portfolio management is to classify and predict credit cardholders' behaviors in a reliable precision because cardholders' behaviors are rather dynamic in nature. This is crucial for creditors because it allows them to take proactive actions and minimize charge-off and bankruptcy losses. Although the methods used in the area of credit portfolio management have improved significantly, the demand for alternative and sophisticated analytical tools is still strong. The objective of this paper is to propose a multiple criteria quadratic programming (MCQP) to classify credit card accounts for business intelligence and decision making. MCQP is intended to predict credit cardholders' behaviors from a nonlinear perspective that is justifiable because both the objective functions and constraints in credit card accounts classification may be nonlinear. Using a real-life credit card dataset from a major US bank, the MCQP method is compared with popular and similar classification methods: linear discriminant analysis, decision tree, multiple criteria linear programming, support vector machine, and neural network. The results indicate that MCQP is a promising business intelligence method in credit card portfolio management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology & Decision Making
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.