Abstract
Support Vector Machine, an optimization technique, is well known in the data mining community. In fact, many other optimization techniques have been effectively used in dealing with data separation and analysis. For the last 10 years, the author and his colleagues have proposed and extended a series of optimization-based classification models via Multiple Criteria Linear Programming (MCLP) and Multiple Criteria Quadratic Programming (MCQP). These methods are different from statistics, decision tree induction, and neural networks. The purpose of this paper is to review the basic concepts and frameworks of these methods and promote the research interests in the data mining community. According to the evolution of multiple criteria programming, the paper starts with the bases of MCLP. Then, it further discusses penalized MCLP, MCQP, Multiple Criteria Fuzzy Linear Programming (MCFLP), Multi-Class Multiple Criteria Programming (MCMCP), and the kernel-based Multiple Criteria Linear Program, as well as MCLP-based regression. This paper also outlines several applications of Multiple Criteria optimization-based data mining methods, such as Credit Card Risk Analysis, Classification of HIV-1 Mediated Neuronal Dendritic and Synaptic Damage, Network Intrusion Detection, Firm Bankruptcy Prediction, and VIP E-Mail Behavior Analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.