Abstract
In classical differential geometry, the problem of obtaining Gaussian and mean curvatures of a surface is one of the most important problems. A surface M2 in I3 is a THA-surface of first type if it can be parameterized by r(s, t) = (s, t, Af(s + at)g(t) + B(f(s + at) + g(t))). A surface M2 in I3 is a THA- surface of second type if it can be parameterized by r(s, t) = (s, Af(s + at)g(t) + B(f(s + at) + g(t)), t), where A and B are non-zero real numbers [16, 17, 18]. In this paper, we classify two types THA-surfaces in the 3-dimensional isotropic space I3 and study THA-surfaces with zero curvature in I3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.