Abstract

Fractures with partial collapse of vertebral bodies are generically referred to as "vertebral compression fractures" or VCFs. VCFs can have different etiologies comprising trauma, bone failure related to osteoporosis, or metastatic cancer affecting bone. VCFs related to osteoporosis (benign fractures) and to cancer (malignant fractures) are commonly found in the elderly population. In the clinical setting, the differentiation between benign and malignant fractures is complex and difficult. This paper presents a study aimed at developing a system for computer-aided diagnosis to help in the differentiation between malignant and benign VCFs in magnetic resonance imaging (MRI). We used T1-weighted MRI of the lumbar spine in the sagittal plane. Images from 47 consecutive patients (31 women, 16 men, mean age 63 years) were studied, including 19 malignant fractures and 54 benign fractures. Spectral and fractal features were extracted from manually segmented images of 73 vertebral bodies with VCFs. The classification of malignant vs. benign VCFs was performed using the k-nearest neighbor classifier with the Euclidean distance. Results obtained show that combinations of features derived from Fourier and wavelet transforms, together with the fractal dimension, were able to obtain correct classification rate up to 94.7% with area under the receiver operating characteristic curve up to 0.95.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call