Abstract

The golden chain with antiferromagnetic interaction is an anyonic system of particular interest as when all anyons are confined to the chain, it is readily stabilized against fluctuations away from criticality. However, additional local scaling operators have recently been identified on the disk which may give rise to relevant fluctuations in the presence of free charges. Motivated by these results for Fibonacci anyons, this paper presents a systematic method of identifying all topological sectors of local scaling operators for critical anyon rings of arbitrary winding number on surfaces of arbitrary genus, extending the original classification scheme proposed by Feiguin et al. Using the new scheme, it is then shown that for the golden chain, additional relevant scaling operators exist on the torus which are equivalent to those detected on the disk and which may disrupt the stability of the critical system. Protection of criticality against perturbations generated by these additional scaling operators can be achieved by suppressing the exchange of charge between the anyon ring and the rest of the manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.