Abstract

The complexity of brain activity involved in the generation of the experience of pain makes it hard to identify neural markers able to predict pain states. The within and between subjects variability of pain hinders the predictive potential of machine learning models trained across participants. This challenge can be tackled by implementing deep learning classifiers based on convolutional neural networks (CNNs). We targeted phase-based connectivity in the alpha band recorded with electroencephalography (EEG) during resting states and sensory conditions (eyes open [O] and closed [C] as resting states, and warm [W] and hot [H] water as sensory conditions). Connectivity features were extracted and re-organized as square matrices, because CNNs are effective in detecting the patterns from 2D data. To assess the classifier performance we implemented two complementary approaches: we 1) trained and tested the classifier with data from all participants, and 2) using a leave-one-out approach, that is excluding one participant at a time during training while using their data as a test set. The accuracy of binary classification between pain condition (H) and eyes open resting state (O) was 94.16% with the first approach, and 61.01 % with the leave-one-out approach. Clinical relevance-Further validation of the CNN classifier may help caregivers track the rehabilitation of chronic pain patients and dynamically modify the therapy. Further refinement of the model may allow its application in critical care setting with unresponsive patients to identify pain-like states otherwise incommunicable to medical personnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.