Abstract
During a tokamak discharge, the plasma can vary between different confinement regimes: low (L), high (H) and, in some cases, a temporary (intermediate state), called dithering (D). In addition, while the plasma is in H mode, edge localized modes (ELMs) can occur. The automatic detection of changes between these states, and of ELMs, is important for tokamak operation. Motivated by this, and by recent developments in deep learning, we developed and compared two methods for automatic detection of the occurrence of L-D-H transitions and ELMs, applied on data from the TCV tokamak. These methods consist in a convolutional neural network and a convolutional long short term memory neural network. We measured our results with regards to ELMs using ROC curves and Youden’s score index, and regarding state detection using Cohen’s Kappa index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.