Abstract

Widespread lakes on the Tibetan Plateau (TP) are valuable archives for investigating climate and environment changes, which could provide essential information on the mechanisms of past climate changes on the TP and their interaction with the global climate systems. However, there is a lack of in-depth investigation of modern limnological processes in the Tibetan lakes, which hampers the understanding of paleolimnological records and lake ecosystem succession. In this study, we performed continuous temperature monitoring at two lakes, Bangong Co, a freshwater lake in the western TP, and Dagze Co, a brackish lake in the central TP, in order to characterize the patterns of seasonal temperature variability, stratification, and mixing. Temperature data for an entire hydrological year demonstrate that Bangong Co is a dimictic lake and that Dagze Co is a meromictic lake. The higher salinity in the deep water at Dagze Co prevents the lake from overturning completely, and this finding is supported by simulations using a physical limnological model Lake Analyzer. Continuous lake water temperature monitoring provides fundamental data for classifying Tibetan lakes, as well as the hydrological basis for understanding their paleolimnological records and ecosystem succession.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call