Abstract
Teleparallel Horndeski theory offers an avenue through which to circumvent the speed constraint of gravitational waves in an efficient manner. However, this provides an even larger plethora of models due to the increase in action terms. In this work we explore these models in the context of cosmological systems. Using Noether point symmetries, we classify the dynamical systems that emerge from teleparallel Horndeski cosmologies. This approach is very effective at selecting specific models in the general class of second-order teleparallel scalar–tensor theories, as well as for deriving exact solutions within a cosmological context. By iterating through the Lagrangians selected through the Noether symmetries, we solve for a number of cosmological systems which provides new cosmological systems to be studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.