Abstract

Using a unique combination of visual, statistical, and data mining methods, we tested the hypothesis that an immune cell's movement pattern can convey key information about the cell's function, antigen specificity, and environment. We applied clustering, statistical tests, and a support vector machine (SVM) to assess our ability to classify different datasets of imaged flouresently labelled T cells in mouse liver. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We found that the movement patterns of T cells specific and non-specific for malaria parasites are differentiable with 72% accuracy, and that specific cells have a higher tendency to move towards the parasite than non-specific cells. Movements of antigen-specific T cells in uninfected mice vs. infected mice were differentiable with 69.8% accuracy. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We concluded that our combination of methods has the potential to advance the understanding of cell movements in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.