Abstract
Classification of SAR images has been an interesting task considering its major role in environmental and natural research areas. Existing studies proposed for Land use/land cover (LU/LC) classification using SAR data can be grouped into two categories: traditional Machine Learning (ML) approaches and approaches that are based on deep Convolutional Neural Networks (CNNs). Traditional ML approaches are generally based on discovering powerful features in terms of discrimination and utilizing different combinations of them. On the other hand, in the latter group, the feature extraction and classification topologies are combined in a single learning framework and they are optimized together. Major drawbacks of the deep CNN methods are that they require a significant amount of annotated data to achieve the desired generalization capability and special hardware, i.e., GPUs for the training and usually inference as well. To address these limitations, employing compact CNNs for the SAR classification is proposed in several existing studies. In this chapter, we investigate the performance of compact CNNs that aim for minimum computational complexity and limited annotated data for the SAR classification. The provided analysis will cover commonly used SAR benchmark datasets consisting of four fully polarimetric, one dual- and one single-polarized SAR data including both spaceborne and airborne sensors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.