Abstract

There is significant interest in establishing appropriate bioprocessing conditions for protein adsorption in hydrophobic interaction chromatographic (HIC) systems without the need for high salt concentrations. In this paper, the adsorption and recovery of proteins under low salt conditions in HIC systems was investigated using a variety of experimental and computational techniques. Parallel batch screening was employed to determine protein adsorption and recovery. Experiments were carried out with twenty six proteins using five resins with different ligand chemistry, ligand density and backbone chemistry. Proteins were classified based on various combinations of adsorption and recovery behavior. In order to gain insight into the effect of protein properties on this behavior, molecular descriptors were computed based on protein crystal structure and primary sequence information as well as a set of hydrophobicity descriptors based on the solvent accessible surface area of the proteins. Finally, classification software CART was employed to determine the key molecular descriptors associated with various types of adsorption behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call