Abstract
The goal of this paper is to tabulate all prime links in the thickened torus [Formula: see text] having diagrams having crossing number 5. First, we construct a table of prime projections of links on the torus [Formula: see text] having exactly 5 crossings. To this end, we enumerate abstract quadrivalent graphs of special type and consider all possible embeddings of the graphs into the torus [Formula: see text] in order to construct prime projections. Then, we prove that all obtained projections are inequivalent. Second, we use the list of prime projections to construct a table of diagrams of prime links in the torus [Formula: see text]. In order to prove that all those links are inequivalent, we use two modifications of the Kauffman bracket. Several known and new tricks allow us to keep the process within reasonable limits and rigorously theoretically prove the completeness of the constructed tables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.