Abstract
The genetic polymorphism of 30 isolates of plant trypanosomatids colloquially referred to as plant trypanosomes was assayed by means of RAPD. The principle objectives of this study were to assess the discriminative power of RAPD analysis for studying plant trypanosomes and to determine whether the results obtained were comparable with those from a previous isoenzyme (MLEE) study. The principle groups of plant trypanosomes identified previously by isoenzyme analysis--intraphloemic trypanosomes, intralaticiferous trypanosomes and trypanosomes isolated from fruits--were also clearly separated by the RAPD technique. Moreover, the results showed a fair parity between MLEE and RAPD data (coefficient of correlation = 0.84) and the two techniques have comparable discriminative ability. Most of the separation revealed by the two techniques between the clusters was associated with major biological properties. However, the RAPD technique gave a more coherent separation than MLEE because the intraphloemic isolates, which were biologically similar in terms of their specific localization in the sieve tubes of the plant, were found to be in closer groups by the RAPD. For both techniques, the existence of the main clusters was correlated with the existence of synapomorphic characters, which could be used as powerful tools in taxonomy and epidemiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.