Abstract

Driving has become essential in transporting people from one place to another. However, prolonged driving could cause muscle fatigue, leading to drowsiness and microsleep. Electromyography is an important type of electro-psychological signal that is used to measure electrical activity in muscles. The current study attempted to use machine learning algorithms to classify EMG signals recorded from the trapezius muscle of 10 healthy subjects in non-fatigue and fatigue conditions. The EMG signals and the time when muscle fatigue was experienced by the subjects were recorded. The mean frequency and median frequency of the EMG signals were extracted as dataset features. Six machine learning models were used for the classification: Logistic Regression, Support Vector Machine, Naïve Bayes, k-nearest Neighbour, Decision Tree and Random Forest. The results show that both the median and mean frequency are lower when fatigue conditions exist. In term of the classification performance, the Random Forest, Decision Tree and k-nearest Neighbour classifiers produced the accuracy levels of 85.00%, 83.75% and 81.25% respectively. Thus, the highest accuracy for classifying muscle fatigue due to prolonged driving was obtained by the Random Forest classifier, using both the median and mean frequency of the EMG signals. This method of using the mean and median frequency will be useful in classifying driver’s non-fatigue and fatigue conditions during prolonged driving.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call