Abstract
The paper reports the development and evaluation of brain signals classifiers. The proposal consisted of three main stages: organization of EEG signals, feature extraction and execution of classification algorithms. The EEG signals used, represent four motor actions: Left Hand, Right Hand, Tongue and Foot movements; in the frame of the Motor Imagery Paradigm. These EEG signals were obtained from a database provided by the Technological University of Graz. From this dataset, only the EEG signals of two healthy subjects were used to carry out the proposed work. The feature extraction stage was carried out by applying an algorithm known as Common Spatial Pattern, in addition to the statistical method called Root Mean Square. The classification algorithms used were: K-Nearest Neighbors, Support Vector Machine, Multilayer Perceptron and Dendrite Morphological Neural Networks. This algorithms was evaluated with two studies. The first one aimed to evaluate the performance in the recognition between two classes of Motor Imagery tasks; Left Hand vs. Right Hand, Left Hand vs. Tongue, Left Hand vs. Foot, Right Hand vs. Tongue, Right Hand vs. Foot and Tongue vs. Foot. The second study aimed to employ the same algorithms in the recognition between four classes of Motor Imagery tasks; Subject 1 - \(93.9\% \pm 3.9\%\) and Subject 2 - \(68.7\% \pm 7\%\).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.