Abstract

This paper proposes the use of two models of neural networks (Multi Layer Perceptron and Dendrite Morphological Neural Network) for the recognition of voluntary movements from electroencephalographic (EEG) signals. The proposal consisted of three main stages: organization of EEG signals, feature extraction and execution of classification algorithms. The EEG signals were recorded from eighteen healthy subjects performing self-paced reaching movements. Three classification scenarios were evaluated in each participant: Relax versus Intention, Relax versus Execution and Intention versus Execution. The feature extraction stage was carried out by applying an algorithm known as Common Spatial Pattern, in addition to the statistical methods called Root Mean Square, Variance, Standard Deviation and Mean. The results showed that the models of neural networks provided decoding accuracies above chance level, whereby, it is able to detect a movement prior its execution. On the basis of these results, the neural networks are a powerful promising classification technique that can be used to enhance performance in the recognition of motor tasks for BCI systems based on electroencephalographic signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.