Abstract

Rate variation among the sites of a molecular sequence is commonly found in applications of phylogenetic inference. Several approaches exist to account for this feature but they do not usually enable the investigator to pinpoint the sites that evolve under one or another rate of evolution in a straightforward manner. The focus is on Bayesian phylogenetic mixture models, augmented with allocation variables, as tools for site classification and quantification of classification uncertainty. The method does not rely on prior knowledge of site membership to classes or even the number of classes. Furthermore, it does not require correlated sites to be next to one another in the sequence alignment, unlike some phylogenetic hidden Markov or change-point models. In the approach presented, model selection on the number and type of mixture components is conducted ahead of both model estimation and site classification; the steppingstone sampler (SS) is used to select amongst competing mixture models. Example applications of simulated data and mitochondrial DNA of primates illustrate site classification via ‘augmented’ Bayesian phylogenetic mixtures. In both examples, all mixtures outperform commonly-used models of among-site rate variation and models that do not account for rate heterogeneity. The examples further demonstrate how site classification is readily available from the analysis output. The method is directly relevant to the choice of partitions in Bayesian phylogenetics, and its application may lead to the discovery of structure not otherwise recognised in a molecular sequence alignment. Computational aspects of Bayesian phylogenetic model estimation are discussed, including the use of simple Markov chain Monte Carlo (MCMC) moves that mix efficiently without tempering the chains. The contribution to the field of Bayesian phylogenetics is in (1) the use of mixture models augmented with allocation variables as tools for site classification and quantification of classification uncertainty, (2) the successful application of SS for selection of phylogenetic mixtures, and (3) the development of novel MCMC aspects of relevance to Bayesian phylogenetic models—whether mixtures or not.11The MCMC methods discussed in this paper have been coded in a C program; source files are available upon request. Supplementary material is available online (see Appendix A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.