Abstract
Dimensionality reduction can often improve the performance of the k-nearest neighbor classifier (kNN) for high-dimensional data sets, such as microarrays. The effect of the choice of dimensionality reduction method on the predictive performance of kNN for classifying microarray data is an open issue, and four common dimensionality reduction methods, Principal Component Analysis (PCA), Random Projection (RP), Partial Least Squares (PLS) and Information Gain(IG), are compared on eight microarray data sets. It is observed that all dimensionality reduction methods result in more accurate classifiers than what is obtained from using the raw attributes. Furthermore, it is observed that both PCA and PLS reach their best accuracies with fewer components than the other two methods, and that RP needs far more components than the others to outperform kNN on the non-reduced dataset. None of the dimensionality reduction methods can be concluded to generally outperform the others, although PLS is shown to be superior on all four binary classification tasks, but the main conclusion from the study is that the choice of dimensionality reduction method can be of major importance when classifying microarrays using kNN.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have